Skip to main content

Groq Deep Research Agent Example

This guide demonstrates how to use the groq-deep-research-agent-51 graph for automated research tasks.

Basic Usage

from lmsystems import SyncLmsystemsClient, APIError
import os

# Initialize client with graph name
client = SyncLmsystemsClient(
graph_name="groq-deep-research-agent-51",
api_key=os.environ.get("LMSYSTEMS_API_KEY")
)

def basic_research(topic: str):
try:
# Create research thread
thread = client.threads.create()

# Stream research results
for chunk in client.stream_run(
thread=thread,
input={
"research_topic": topic
},
config={
"configurable": {
"llm": "llama-3.1-8b-instant",
"groq_api_key": os.environ.get("GROQ_API_KEY"),
"tavily_api_key": os.environ.get("TAVILY_API_KEY"),
"max_web_research_loops": 3 # Optional
}
},
stream_mode=["messages", "updates"]
):
if "message" in chunk:
print(f"New message: {chunk['message']['content']}")
elif "update" in chunk:
print(f"Research update: {chunk['update']}")

except APIError as e:
print(f"Research failed: {str(e)}")

if __name__ == "__main__":
basic_research("AI safety alignment recent developments")

Input Parameters Guide

ParameterRequiredTypeDescription
research_topicYesstringPrimary research subject
search_queryNostringCustom search query (default: generated from topic)
running_summaryNostringInitial summary for iterative research
research_loop_countNointegerStart from specific iteration count
web_research_resultsNoarrayPre-existing research materials

Configuration Options

config = {
"configurable": {
"llm": "", # Required Groq model
"groq_api_key": "your-groq-key", # Required
"tavily_api_key": "your-tavily-key", # Required
"max_web_research_loops": 5 # Optional (default: 3)
}
}

Error Handling

from lmsystems import (
AuthenticationError,
InputError,
GraphExecutionError
)

try:
# Research execution code
except InputError as e:
print(f"Missing required parameter: {e}")
except AuthenticationError as e:
print(f"Check your API keys: {e}")
except GraphExecutionError as e:
print(f"Research failed at step {e.node_id}: {e}")

Best Practices

  1. API Keys

    • Get Groq API key from Groq Console
    • Get Tavily key from Tavily
    • Never hardcode keys - use environment variables
  2. Stream Handling

    async for chunk in client.stream_run(...):
    if "message" in chunk:
    # Handle assistant messages
    elif "value" in chunk:
    # Track state changes like loop_count
    elif "update" in chunk:
    # Monitor research progress
  3. Model Selection

    • Supported Groq models: I believe all models are supported (including deepseek-r1), although i've only tested llama and deepseek models.
  4. Result Processing

    final_state = client.get_thread_state(thread)
    print(f"Final summary: {final_state['running_summary']}")
    print(f"Sources used: {len(final_state['sources_gathered'])}")