Skip to main content

Exa Search Agent Example

This guide demonstrates how to use the exa-search-react-agent-61 graph for performing targeted web searches with domain filtering.

Basic Usage

from lmsystems import SyncLmsystemsClient, APIError
import os

# Initialize client with graph name
client = SyncLmsystemsClient(
graph_name="exa-search-react-agent-61",
api_key=os.environ.get("LMSYSTEMS_API_KEY")
)

def search_with_domains(query: str, domains: list[str]):
try:
# Create a new thread
thread = client.threads.create()

# Stream search results
for chunk in client.stream_run(
thread=thread,
input={
"messages": [
{"role": "user", "content": query}
],
"include_domains": domains
},
stream_mode=["updates"]
):
print(f"Search update: {chunk}")

# Get final status
final_status = client.get_thread_status(thread)
print(f"Search completed with status: {final_status}")

except APIError as e:
print(f"Search failed: {str(e)}")

if __name__ == "__main__":
search_with_domains(
"How can I turn langgraph into an mcp server?",
["langchain.com", "langchain-ai.github.io"]
)

Input Parameters Guide

ParameterRequiredTypeDescription
messagesYesarrayArray of message objects with role and content
include_domainsNoarrayList of domains to restrict search to
exclude_domainsNoarrayList of domains to exclude from search
max_resultsNointegerMaximum number of search results (default: 5)

Message Format

messages = [
{
"role": "user",
"content": "Your search query here"
}
# Can include multiple messages for context
]

Error Handling

from lmsystems import (
AuthenticationError,
InputError,
GraphExecutionError
)

try:
# Search execution code
except InputError as e:
print(f"Invalid input parameters: {e}")
except AuthenticationError as e:
print(f"Authentication failed: {e}")
except GraphExecutionError as e:
print(f"Search failed at step {e.node_id}: {e}")

Best Practices

  1. Domain Filtering

    • Use include_domains to focus search on specific websites
    • Use exclude_domains to filter out unwanted sources
    • Combine both for precise control over search scope
  2. Stream Handling

    for chunk in client.stream_run(...):
    if "update" in chunk:
    # Process search progress updates
    elif "message" in chunk:
    # Handle search results
  3. Thread Management

    # Create new thread for each search session
    thread = client.threads.create()

    # Check thread status
    status = client.get_thread_status(thread)
  4. API Key Security

    • Store API key in environment variables
    • Never hardcode API keys in your code
    api_key = os.environ.get("LMSYSTEMS_API_KEY")