Exa Search Agent Example
This guide demonstrates how to use the exa-search-react-agent-61
graph for performing targeted web searches with domain filtering.
Basic Usage
from lmsystems import SyncLmsystemsClient, APIError
import os
# Initialize client with graph name
client = SyncLmsystemsClient(
graph_name="exa-search-react-agent-61",
api_key=os.environ.get("LMSYSTEMS_API_KEY")
)
def search_with_domains(query: str, domains: list[str]):
try:
# Create a new thread
thread = client.threads.create()
# Stream search results
for chunk in client.stream_run(
thread=thread,
input={
"messages": [
{"role": "user", "content": query}
],
"include_domains": domains
},
stream_mode=["updates"]
):
print(f"Search update: {chunk}")
# Get final status
final_status = client.get_thread_status(thread)
print(f"Search completed with status: {final_status}")
except APIError as e:
print(f"Search failed: {str(e)}")
if __name__ == "__main__":
search_with_domains(
"How can I turn langgraph into an mcp server?",
["langchain.com", "langchain-ai.github.io"]
)
Input Parameters Guide
Parameter | Required | Type | Description |
---|---|---|---|
messages | Yes | array | Array of message objects with role and content |
include_domains | No | array | List of domains to restrict search to |
exclude_domains | No | array | List of domains to exclude from search |
max_results | No | integer | Maximum number of search results (default: 5) |
Message Format
messages = [
{
"role": "user",
"content": "Your search query here"
}
# Can include multiple messages for context
]
Error Handling
from lmsystems import (
AuthenticationError,
InputError,
GraphExecutionError
)
try:
# Search execution code
except InputError as e:
print(f"Invalid input parameters: {e}")
except AuthenticationError as e:
print(f"Authentication failed: {e}")
except GraphExecutionError as e:
print(f"Search failed at step {e.node_id}: {e}")
Best Practices
-
Domain Filtering
- Use
include_domains
to focus search on specific websites - Use
exclude_domains
to filter out unwanted sources - Combine both for precise control over search scope
- Use
-
Stream Handling
for chunk in client.stream_run(...):
if "update" in chunk:
# Process search progress updates
elif "message" in chunk:
# Handle search results -
Thread Management
# Create new thread for each search session
thread = client.threads.create()
# Check thread status
status = client.get_thread_status(thread) -
API Key Security
- Store API key in environment variables
- Never hardcode API keys in your code
api_key = os.environ.get("LMSYSTEMS_API_KEY")